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We construct an intrinsic family of Gaussian noises on the 𝑑-dimensional flat torus T𝑑 . It is the analogue of the
colored noise on R

𝑑 and allows us to study stochastic PDEs on the torus in the Itô sense in high dimensions. With
this noise, we consider the parabolic Anderson model (PAM) with measure-valued initial conditions and establish
some basic properties of the solution, including a sharp upper and lower bound for the moments and Hölder
continuity in space and time. The study of the toy model of T𝑑 in the present paper is a first step in our effort
to understand how geometry and topology play a role in the behavior of stochastic PDEs on general (compact)
manifolds.
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1. Introduction
In this paper, we construct an intrinsic family of Gaussian noises on the 𝑑-dimensional torus T

𝑑 :=
[−𝜋, 𝜋]𝑑 that is colored in space and white in time. It is the analogue of the colored noise on R

𝑑 , and
it enables one to study, in Itô’s sense, the parabolic Anderson model (PAM, see (1.6) below) and other
stochastic partial differential equations (SPDEs) on T

𝑑 in higher dimensions. In this setting, we aim at
understanding how the topology and geometry of non-Euclidean spaces influence the behavior of the
solution. More specifically, let 𝐺 (𝑡, 𝑥) be the heat kernel on T

𝑑 , i.e.,

𝐺 (𝑡, 𝑥) :=
∑
𝑘∈Z𝑑

𝑑∏
𝑖=1

𝑝 (𝑡, 𝑥𝑖 + 2𝜋𝑘𝑖) for all 𝑡 > 0 and 𝑥 = (𝑥1, · · · , 𝑥𝑑) ∈ T
𝑑 , (1.1)

where we use 𝑝(𝑡, 𝑥) := (2𝜋𝑡)−1/2𝑒−𝑥
2/(2𝑡 ) for 𝑥 ∈ R to denote the heat kernel on R. Sometimes we use

a subscript 𝑑 to denote the dimension of the space, e.g., 𝑝𝑑 (𝑡, 𝑥) := (2𝜋𝑡)−𝑑/2𝑒−
|𝑥 |2
2𝑡 for 𝑥 ∈ R

𝑑 where

|𝑥 | =
√
𝑥2

1 + · · · + 𝑥2
𝑑

. Alternatively, 𝐺𝑑 (𝑡, 𝑥) in (1.1) can be expressed as

𝐺𝑑 (𝑡, 𝑥) =
𝑑∏
𝑖=1

𝐺1(𝑡, 𝑥𝑖).

When there is no confusion from context, this subscript 𝑑 will be omitted.

Fix 𝜌 ≥ 0 and 𝛼 > 0. The spatial covariance function of our colored noise will be given by

𝑓𝛼, 𝜌 (𝑥) :=
𝜌

(2𝜋)𝑑
+ 1
Γ(𝛼)

∫ ∞

0
𝑡𝛼−1

(
𝐺 (𝑡, 𝑥) − 1

(2𝜋)𝑑

)
d𝑡, for 𝑥 ∈ T

𝑑 . (1.2)
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The function 𝑓𝛼, 𝜌 is an analogue of the Riesz kernel on R
𝑑 and is related to the spectral decomposition

of the Laplacian on T
𝑑 (see Section 3 for more details). Moreover, it is well understood that for all

𝛼 > 0 and 𝜌 ≥ 0, there exists some constant 𝐶 > 0 such that 𝑓𝛼, 𝜌 admits the following estimate (see,
e.g., Lemma 2.9 of Brosamler (1983))

�� 𝑓𝛼, 𝜌 (𝑥)�� ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐶 if 𝛼 > 𝑑/2

𝐶 (1 + log− |𝑥 |) if 𝛼 = 𝑑/2

𝐶 |𝑥 |−𝑑+2𝛼 if 𝛼 < 𝑑/2

for all 𝑥 ∈ T
𝑑 , (1.3)

where log− 𝑡 := max(0,− log 𝑡). The above estimate implies that the colored noise is smoother than the
white noise. In addition, the parameter 𝜌 controls the level of 𝑓𝛼, 𝜌 while 𝛼 controls its regularity. In
what follows, we adopt the following convention:

𝑓𝛼 (𝑥) := 𝑓𝛼,0(𝑥) and 𝑓 (𝑥) := 𝑓1(𝑥). (1.4)

It is known that 𝑓 (𝑥), the Green’s function of the Laplace operator on T
𝑑 , is not positive. The same

can be said of our covariance function 𝑓𝛼, 𝜌 (𝑥) (see Lemma 3.2 below). Throughout the paper, we use
the convention that

𝐺 (𝑡, 𝑥, 𝑦) =𝐺 (𝑡,�𝑥 − 𝑦�) and 𝑓𝛼, 𝜌 (𝑥, 𝑦) = 𝑓𝛼, 𝜌 (�𝑥 − 𝑦�), (1.5)

where for 𝑥 = (𝑥1, · · · , 𝑥𝑑) ∈ R
𝑑 , �𝑥� := (�𝑥1� , · · · ,�𝑥𝑛�) with �𝑥𝑖� = mod(𝑥𝑖 + 𝜋,2𝜋) − 𝜋, i.e., �𝑥𝑖�

is the signed remainder1 of 𝑥𝑖 when divided by 𝜋. Note that |�𝑥 − 𝑦�| is the distance between 𝑥 and 𝑦
on the torus, namely, dist(𝑥, 𝑦) := |�𝑥 − 𝑦�|.

For the colored noise described above, we consider the following SPDE, or PAM, on T
𝑑

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝑢(𝑡, 𝑥) =

1
2
�𝑢(𝑡, 𝑥) + 𝜆𝑢(𝑡, 𝑥) 	𝑊 (𝑡, 𝑥), (𝑡, 𝑥) ∈ (0,∞) × T

𝑑 ,

𝑢(0, ·) = 𝜇,

(1.6)

where 	𝑊 (𝑡, 𝑥) is a centered Gaussian noise, white in time and colored in space, and 𝜆 ≠ 0 is a constant
that controls the level of the noise. We assume that the initial condition 𝜇 is a finite (nonnegative)
measure on T

𝑑 , namely,

𝐶𝜇 :=
∫
T𝑑

𝜇(d𝑥) <∞. (1.7)

The solution to (1.6) is interpreted as the integral equation or the mild solution (see Definition 5.1
below for more details)

𝑢(𝑡, 𝑥) = 𝐽0(𝑡, 𝑥) + 𝜆
∫ 𝑡

0

∫
T𝑑

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦)𝑢(𝑠, 𝑦)𝑊 (d𝑠,d𝑦) a.s., (1.8)

1Here we use the same convention as Wolfram Mathematica that the mod function always returns the positive reminder, i.e.,
mod(𝑥, 2𝜋 ) = 𝑐 iff 𝑐 ∈ [0, 2𝜋 ) and 𝑥 = 2𝜋𝑑 + 𝑐 for some 𝑑 ∈ Z. Alternatively, �𝑥� can be equivalently expressed as �𝑥� :=
mod(𝑥, 2𝜋, −𝜋 ) , where mod(𝑚, 𝑛, 𝑑) is the same modulo function with an offset 𝑑 as that in Wolfram Mathematica.
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where the stochastic integral is in the Itô/Walsh sense and 𝐽0(𝑡, 𝑥) refers to the solution to the homoge-
neous equation, namely,

𝐽0(𝑡, 𝑥) :=
∫
T𝑑

𝐺 (𝑡, 𝑥, 𝑦)𝜇(d𝑦). (1.9)

Assumption 1.1 (Dalang’s condition). Denote Z
𝑑
∗ := Z

𝑑 \ {0}. We assume that the correlation func-
tion 𝑓𝛼, 𝜌 (·) satisfies the following equivalent conditions

∑
𝑘∈Z𝑑

∗

F ( 𝑓𝛼, 𝜌)(𝑘)
|𝑘 |2

<∞ ⇐⇒ 2(𝛼 + 1) > 𝑑 (thanks to (3.2)). (1.10)

Remark 1.1. Dalang’s condition usually refers to the condition on the correlation function 𝑓 such that
the corresponding stochastic partial differential equation (SPDE) with an additive noise has a unique
solution; see Dalang (1999). For most parabolic SPDEs, Dalang’s condition is usually the necessary
and sufficient condition for the existence of a unique solution when the noise is of multiplicative type.
In the current setting, Dalang’s condition (1.10) regulates the high frequencies of 𝑓𝛼, 𝜌 in the Fourier
mode, which in turn controls the singularity of 𝑓𝛼, 𝜌 (𝑥) at 𝑥 = 0 in the direct mode (see (1.3)). We also
would like to mention that Dalang’s condition is only a condition on 𝛼 not 𝜌.

Remark 1.2. The solution theory of (1.6) is rather straightforward when 𝛼 > 𝑑/2 since the covariance
function 𝑓𝛼, 𝜌 is bounded and continuous in this case (see (1.3)). We hence assume 𝛼 < 𝑑/2 in the rest
of our discussion. The case 𝛼 = 𝑑/2 can be treated in similar ways as 𝛼 < 𝑑/2, which will be left for
the interested readers.

Our first main result is summarized in the following theorem:

Theorem 1.3. Suppose that the correlation function 𝑓𝛼, 𝜌 (·) satisfies Dalang’s condition (1.10) for
some 𝛼 ∈ (0, 𝑑/2). Then there exists a unique solution 𝑢 to (1.6) starting from a finite measure 𝜇 on
T
𝑑 . Moreover, the solution satisfies the following properties:

1. For all 𝑡 > 0 and 𝑥, 𝑥′ ∈ T
𝑑 , it holds that

E [𝑢(𝑡, 𝑥)𝑢(𝑡, 𝑥′)] = 𝐽0(𝑡, 𝑥)𝐽0 (𝑡, 𝑥′) + 𝜆−2
∬

T2𝑑
𝜇(d𝑧)𝜇(d𝑧′)K𝜆(𝑡 − 𝑠, 𝑥, 𝑧, 𝑥′, 𝑧′) (1.11)

where K is defined in Definition 4.2.
2. For all 𝑡 > 0, 𝑥 ∈ T

𝑑 , and 𝑝 ≥ 2, it holds that

| |𝑢(𝑡, 𝑥) | |𝑝 ≤
√

2𝐽0(𝑡, 𝑥)
[
𝐻4𝜆

√
𝑝 (𝑡)

]1/2
, (1.12)

where the function 𝐻𝜆(𝑡) is defined in (3.15). Moreover, when 𝜆2𝑝 is large enough, there exists
some constant 𝐶 > 0 such that

| |𝑢(𝑡, 𝑥) | |𝑝 ≤ 𝐶𝐽0 (𝑡, 𝑥) exp
(
𝐶𝜆

max
(

4
2(1+𝛼)−𝑑 , 2

)
𝑝

max
(

2
2(1+𝛼)−𝑑 , 1

)
𝑡

)
, (1.13)

for all (𝑡, 𝑥, 𝑝) ∈ (0,∞) × T
𝑑 × [2,∞).
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Remark 1.4. It is worth mentioning that our result allows measure-valued initial conditions. In par-
ticular, it includes the important cases when 𝜇 = 𝛿0 and 𝜇 = 1. The proof of Theorem 1.3 is inspired
by the method developed in Chen and Dalang (2015), Chen and Kim (2019), Chen and Huang (2019)
for the stochastic heat equation (SHE) on R

𝑑 . The main novelty of our approach is to observe that
the Brownian bridge (starting from 𝑥 and conditioned on arriving at 𝑦 at time 𝑡) plays an important
role. The proof of the theorem is then based on the observation that a Brownian bridge on the torus is
comparable with one on an Euclidean space when 𝑡 is small, whereas it is comparable to a Brownian
motion on the torus when 𝑡 is large; see Lemma 2.2 and Lemma 2.3 for the precise statements.

The study of the PAM in current literature usually assumes that the covariance function is positive.
Unfortunately, this is not the case for 𝑓𝛼, 𝜌 in general. However, one can show that it is indeed a positive
function when 𝜌 is large enough (see Lemma 3.2 below). In this case, we are able to derive the following
lower bound for the second moment of 𝑢.

Theorem 1.5. Let the spatial covariance function 𝑓 : T2𝑑 → R+ be a generic nonnegative and non-
negative definite function. Assume that 𝑓 is uniformly bounded from below away from zero, i.e.,

𝐶 𝑓 := inf
𝑥,𝑥′ ∈T𝑑

𝑓 (𝑥, 𝑥′) > 0, (1.14)

then for all 𝜖 > 0, it holds that

E

(
𝑢(𝑡, 𝑥)2

)
≥ 𝐽2

0 (𝑡, 𝑥) +
1
2
𝜆−2𝑐𝑑𝜖 𝐶

2
𝜇 exp

(
𝐶 𝑓 𝑡

2

)
, ∀(𝑡, 𝑥) ∈ [𝜖,∞) × T

𝑑 , (1.15)

where the constants 𝐶𝜇 and 𝑐𝜖 are given in (1.7) and (2.10), respectively.

Compared to Theorem 1.3, Theorem 1.5 provides a matching (exponential in 𝑡) lower bound for the
second moment of 𝑢. This theorem will be proved in Section 6, where one can find more discussions
regarding the lower bounds of the second moment.

We believe that Theorem 1.5 holds true for all 𝜌 > 0; the condition requiring 𝜌 large enough so that
𝑓𝛼, 𝜌 is positive is only a technical assumption. Indeed, if we assume in addition that the initial data 𝜇
is given by a bounded measurable function, we are able to prove the exponential lower bound for all
𝜌 > 0.

Theorem 1.6. Assume that the initial condition is given by a bounded measurable function which is
also bounded below away from zero. Then under Dalang’s condition (1.10), the second moment of the
solution to the parabolic Anderson model satisfies the exponential lower bound for some 𝐶,𝐶′ > 0,

E
[
𝑢(𝑡, 𝑥)2] ≥ 𝐶𝑒𝐶

′𝑡 ,

when the driving noise satisfies 𝜌 > 0.

The heuristics of the above theorem go as follows. Assume for a moment that 𝜇 ≡ 1 so that we have
the Feynman-Kac formula for the second moment:

E
[
𝑢(𝑡, 𝑥)2] = E

[
exp

{
𝜆2

∫ 𝑡

0
𝑓𝛼, 𝜌 (𝐵𝑠, 𝐵𝑠)d𝑠

}]
. (1.16)



3064 L. Chen, O. Cheng and W. Vickery

In the above, 𝐵 and 𝐵 are two independent Brownian motions on T
𝑑 starting from 𝑥 and E refers to the

expectation with respect to both Brownian motions. Since T
𝑑 is compact, the ergodic theorem implies

that the exponent in (1.16) asymptotically and almost surely becomes∫ 𝑡

0
𝑓𝛼, 𝜌 (𝐵𝑠 , 𝐵𝑠)d𝑠 ∼ 𝑡 ×

(
1

(2𝜋)2𝑑

∬
T2𝑑

𝑓𝛼, 𝜌 (𝑥, 𝑦)d𝑥d𝑦
)

=
𝜌 𝑡

(2𝜋)𝑑
+ 𝑡

(2𝜋)2𝑑

∬
T2𝑑

𝑓𝛼 (𝑥, 𝑦)d𝑥d𝑦

=
𝜌 𝑡

(2𝜋)𝑑
+ 𝑡

(2𝜋)𝑑

∫
T𝑑

𝑓𝛼,0(𝑥)d𝑥, as 𝑡 ↑∞.

From (1.2), we see that
∫
T𝑑

𝑓𝛼,0(𝑥)d𝑥 = 0. Therefore, as 𝑡 ↑∞,

E
[
𝑢(𝑡, 𝑥)2] ≥ [

exp
{
𝜆2
E

∫ 𝑡

0
𝑓𝛼, 𝜌 (𝐵𝑠 , 𝐵𝑠)d𝑠

}]
∼ exp

(
𝜌𝜆2

(2𝜋)𝑑
𝑡 + 𝑜(𝑡)

)
.

The above argument clearly suggests that the ergodicity of the Brownian motion (due to compactness
of the torus) is the main source that leads to the exponential lower bound for the second moment. As
a consequence, one always observes intermittency in this situation; no phase transition takes place.
However, the question becomes more delicate when 𝜌 = 0. In addition, Theorem 1.6 does not address
the case when the initial data is rough (see Remark 6.1 below) and it only provides the second moment
lower bound instead of lower bounds for the general 𝑝-th moments with 𝑝 ≥ 2 (see Remark 6.2 below).
These questions will be tackled in a future work.

Finally, the Hölder regularity of the solution 𝑢 is given as follows.

Theorem 1.7. If the noise correlation satisfies Dalang’s condition (1.10) for some 𝛼 ∈ (0, 𝑑/2), the
unique solution 𝑢 starting from a finite measure 𝜇 is 𝛽1–Hölder continuous in time and 𝛽2–Hölder
continuous in space on (0,∞) × T

𝑑 for all

𝛽1 ∈
(
0,

2𝛼 + 2 − 𝑑

4

)
and 𝛽2 ∈

(
0,

2𝛼 + 2 − 𝑑

2

)
.

This theorem will be proved in Section 7. The proof of this theorem follows similar arguments as
the corresponding result for R𝑑 (see Theorem 1.8 of Chen and Huang (2019)) with more complexity
introduced by the fundamental solution.

There has been a growing interest in the study of SPDE (and related polymers models) on some
“exotic” spaces. For example, C. Cosco, I. Seroussi and O. Zeitouni considered directed polymers on
an infinite graph in Cosco, Seroussi and Zeitouni (2021). In a recent work Baudoin et al. (2023), the
authors studied the PAM on Heisenberg groups. In addition, A. Mayorcas and H. Singh released a
preprint Mayorcas and Singh (2023) recently studying singular SPDEs on Homogeneous Lie Groups.

The construction of the colored noise on T
𝑑 presented in this paper grows from a discussion between

the second author and Prof. Elton Hsu during the BIRS-CMO workshop “Theoretical and Applied
Stochastic Analysis” in 2018. Later, the second author was informed by Prof. Fabrice Baudoin that a
fractional noise is introduced in a similar spirit on general Riemannian manifolds in Gelbaum (2014).

Our construction of the noise can be generalized to general (compact) Riemannian manifolds,
thereby encompassing a large class of spaces with rich geometric and topological properties. We show
that the noise covariance 𝑓𝛼, 𝜌 has a straightforward Fourier series decomposition in (3.2). This is the
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motivation for the definition (1.2). The eigenvectors of the Laplace-Beltrami operator correspond with
the Fourier series on T

𝑑 , but we can produce a similar noise using the basis of Laplace-Beltrami eigen-
functions on a general compact manifold. This naturally raises the questions: Which specific geometric
or topological properties might influence the behavior of the PAM, and how might they introduce novel
features to the model? The present work can be regarded as an initial step in this direction. In particu-
lar, as elaborated in Remark 1.4 above, we observed that the behavior of the Brownian bridge 𝐵𝑡 ,𝑥,𝑦 (𝑠)
(starting from 𝑥 and conditioned on arriving at 𝑦 at time 𝑡) for small time 𝑠 plays an important role.
On a general compact manifold, the Brownian bridge is still comparable to a Brownian motion when 𝑡
is large and 𝑠 is relatively small. Whereas when 𝑡 is small, 𝐵𝑡 ,𝑥,𝑦 (𝑠) is concentrated around the short-
est geodesic(s) connecting 𝑥 and 𝑦. This observation allows us to localize our computations and to
tackle the problem in direct mode without resorting to Fourier analysis. The implementation of this
observation in order to study the PAM on general manifolds will be given in a subsequent work.

The rest of the paper is organized as follows. In Section 2, we prove some preliminary properties
of the densities of the Brownian motion and Brownian bridge on the torus. Section 3 is dedicated to
the construction of the colored noise on the torus. The main technical step in proving Theorem 1.3
is prepared in Section 4. Then we prove Theorem 1.3 in Section 5 and Theorems 1.5 and 1.6 in Sec-
tion 6. Finally, the Hölder continuity of the solution claimed in Theorem 1.7 is established in Section 7.
In order to improve the readability of the article, we deferred the proof of Lemma 2.1 to the supple-
ment Chen, Ouyang and Vickery (2025).

2. Preliminary – the fundamental solution and various properties

In this section, we establish some properties of the fundamental solution.

Lemma 2.1. The fundamental solution 𝐺 (𝑡, 𝑥) satisfies

𝐶𝑑
𝑡 ≤ 𝐺 (𝑡, 𝑥)

𝑝𝑑 (𝑡, 𝑥)
≤ (2𝐶𝑡 )𝑑 , for all (𝑡, 𝑥) ∈ R+ × T

𝑑 , (2.1)

where the constant 𝐶𝑡 as a function of 𝑡 can be expressed in the following equivalent expressions:

𝐶𝑡 =
∞∑

𝑛=−∞
𝑒−

2𝑛2 𝜋2
𝑡 =

∞∏
𝑛=1

(
1 − 𝑒−

4𝑛𝜋2
𝑡

) (
1 + 𝑒−

2(2𝑛−1) 𝜋2
𝑡

)2

=

√
𝑡

2𝜋

∞∑
𝑛=−∞

𝑒−
𝑛2𝑡

2 =

√
𝑡

2𝜋

∞∏
𝑛=1

(
1 − 𝑒−𝑛𝑡

) (
1 + 𝑒−

(2𝑛−1)𝑡
2

)2
.

(2.2)

Moreover, the following properties hold:

1. 𝐶𝑡 has the following asymptotic properties:

lim
𝑡→0

𝑡 log (log (𝐶𝑡 )) = −𝜋2 and lim
𝑡→∞

1
𝑡

log

(
log

(
𝐶𝑡

√
2𝜋
𝑡

))
= −1

2
; (2.3)

2. 𝐶𝑡 satisfies the following bounds for all 𝑡 > 0:

max

(
1,

√
𝑡

2𝜋

)
≤ 𝐶𝑡 ≤ 1 +

√
𝑡

2𝜋
; (2.4)
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Figure 1. Some plots (solid lines) of the function 𝐶𝑡 as given in (2.2) together with plots (dashed lines) for√
𝑡/(2𝜋). The left (resp. right) figure illustrates the small (resp. large) 𝑡 behavior of 𝐶𝑡 .

3. For all 𝑡 > 0 and 𝑥 ∈ T
𝑑 , it holds that

𝐺 (𝑡, 𝑥) ≤
(√

2𝜋
𝑡
𝐶𝑡

)𝑑
≤

(
1 +

√
2𝜋
𝑡

)𝑑
; (2.5)

4. For any 𝜖 > 0, there exists some constant Θ𝜖 ,𝑑 > 0 such that for all 𝑡 ≥ 𝜖 ,

sup
𝑥∈T𝑑

�����𝐺 (𝑡, 𝑥) −
(

1
2𝜋

)𝑑 ����� ≤ Θ𝜖 ,𝑑 𝑒
−𝑡/2. (2.6)

The proof of Lemma 2.1 is given in the supplement to this paper Chen, Ouyang and Vickery (2025).
The estimate in (2.6) can also be found in Theorem 2.15 of Baxter and Brosamler (1976). In Figure 1,
we plot some graphs of 𝐶𝑡 as a function of 𝑡.

We will need to introduce the density of the pinned Brownian motion or Brownian bridge (started at
𝑥0 and terminating at 𝑥 at time 𝑡) on T

𝑑:

𝐺𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧) :=
𝐺 (𝑠, 𝑥0, 𝑧)𝐺 (𝑡 − 𝑠, 𝑧, 𝑥)

𝐺 (𝑡, 𝑥0, 𝑥)
, ∀(𝑥0, 𝑥, 𝑧) ∈ T

3𝑑 , 0 < 𝑠 < 𝑡. (2.7)

The corresponding transition density for the Brownian bridge on R
𝑑 is

𝑝𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧) :=
𝑝(𝑠, 𝑥0 − 𝑧)𝑝(𝑡 − 𝑠, 𝑧 − 𝑥)

𝑝(𝑡, 𝑥0 − 𝑥)

= 𝑝

(
𝑠(𝑡 − 𝑠)

𝑡
, 𝑧 −

(
𝑥0 +

𝑠

𝑡
(𝑥 − 𝑥0)

))
, ∀(𝑥0, 𝑥, 𝑧) ∈ R

3𝑑 , 0 < 𝑠 < 𝑡.

(2.8)

The following lemma states that when 𝑡 is “large” and 𝑠 is small, the transition density of a Brownian
bridge is comparable to that of a Brownian motion on torus.

Lemma 2.2. Fix an arbitrary 𝜖 > 0. Suppose that 𝑡 ≥ 𝜖 . Then for all 𝑠 ∈ [0, 𝑡/2] and 𝑥0, 𝑧 ∈ T
𝑑 , the

density for the Brownian bridge is comparable to a Gaussian on the torus,

𝑐𝑑𝜖 𝐺 (𝑠, 𝑥0, 𝑧) ≤ 𝐺𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧) ≤ 𝐶𝑑
𝜖 𝐺 (𝑠, 𝑥0, 𝑧), (2.9)
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where

𝑐𝜖 :=
√
𝜖

2
√
𝜋 +

√
2𝜖

× 1

2
√

2
𝑒−

𝜋2
2𝜖 and 𝐶𝜖 := 2

(
1 +

√
2𝜋
𝜖

)
𝑒𝜋

2/𝜖 . (2.10)

Proof. We first prove the case when 𝑑 = 1. From (2.1), we see that

𝑝1 (𝑡 − 𝑠,�𝑧 − 𝑥�)
𝑝1 (𝑡,�𝑥0 − 𝑥�)

× 𝐶𝑡−𝑠
2𝐶𝑡

≤ 𝐺 (𝑡 − 𝑠, 𝑧, 𝑥)
𝐺 (𝑡, 𝑥0, 𝑥)

≤
𝑝1 (𝑡 − 𝑠,�𝑧 − 𝑥�)
𝑝1 (𝑡,�𝑥0 − 𝑥�)

× 2𝐶𝑡−𝑠
𝐶𝑡

.

Since �𝑥� ∈ [−𝜋, 𝜋], we see that√
𝑡 − 𝑠

𝑡
𝑒−

𝜋2
2𝑡 ≤

𝑝1 (𝑡 − 𝑠,�𝑧 − 𝑥�)
𝑝1 (𝑡,�𝑥0 − 𝑥�)

≤
√
𝑡 − 𝑠

𝑡
𝑒

𝜋2
2(𝑡−𝑠) .

Since 𝑡 > 𝜖 and 𝑠 ∈ (0, 𝑡/2), we see that 𝜖/2 ≤ 𝑡/2 ≤ 𝑡 − 𝑠 ≤ 𝑡. Hence,

1
√

2
𝑒−

𝜋2
2𝜖 ≤

𝑝1 (𝑡 − 𝑠,�𝑧 − 𝑥�)
𝑝1 (𝑡,�𝑥0 − 𝑥�)

≤ 𝑒𝜋
2/𝜖 .

From (2.4), we see that

𝐶𝑡−𝑠
𝐶𝑡

≤
1 +

√
𝑡−𝑠
2𝜋√

𝑡
2𝜋

≤
√

2𝜋 +
√
𝑡

√
𝑡

≤ 1 +
√

2𝜋
𝜖

and

𝐶𝑡−𝑠
𝐶𝑡

≥

√
𝑡−𝑠
2𝜋

1 +
√

𝑡
2𝜋

≥

√
𝑡

4𝜋

1 +
√

𝑡
2𝜋

≥
√

𝜖
4𝜋

1 +
√

𝜖
2𝜋

=

√
𝜖

2
√
𝜋 +

√
2𝜖

.

Combining the above inequalities proves the case of 𝑑 = 1 with the constants given in the statement of
the lemma. As for the case 𝑑 ≥ 2, one only needs to raise the above constants 𝑐𝜖 and 𝐶𝜖 to the power
of 𝑑. This proves Lemma 2.2.

The next lemma is our formal statement that when 𝑡 is small, the Brownian Bridge on the torus can
be compared to that on R

𝑑:

Lemma 2.3. There exists a universal constant 𝐶 > 0 such that for all 𝑡 > 𝑠 > 0 and 𝑥, 𝑥0, 𝑧 ∈ T
𝑑 with

𝑧 − 𝑥0 ∈ T
𝑑 , it holds that

𝐺𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧) ≤ 𝐶
(
1 +

√
𝑡
)𝑑 ∑

𝑘∈Π𝑑

𝑝𝑡 ,𝑥0 ,𝑥+𝑘 (𝑠, 𝑧),

where

Π := {−2𝜋,0,2𝜋} . (2.11)

Note that 𝑝𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧) is a function on R
𝑑 (as apposed to a function on the torus). The condition

𝑧 − 𝑥0 ∈ T
𝑑 above is simply a concise way to state that, when evaluated by 𝑝𝑡 ,𝑥0 ,𝑥 (𝑠, ·), 𝑧 takes values

in [𝑥1
0 − 𝜋, 𝑥1

0 + 𝜋] × · · · × [𝑥𝑑0 − 𝜋, 𝑥𝑑0 + 𝜋] ⊂ R
𝑑 for 𝑥0 = (𝑥1

0, . . . , 𝑥
𝑑
0 ).
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Proof. It suffices to prove the case 𝑑 = 1. Fix arbitrary 𝑡 > 𝑠 > 0. Let 𝑥, 𝑥0, 𝑧 ∈ T with 𝑧 − 𝑥0 ∈ T.
From (2.1), we see that

𝐺𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧) =
𝐺 (𝑠, 𝑧 − 𝑥0)𝐺 (𝑡 − 𝑠,�𝑥 − 𝑧�)

𝐺 (𝑡,�𝑥 − 𝑥0�)
≤ 4

𝐶𝑠𝐶𝑡−𝑠
𝐶𝑡

𝑝(𝑠, 𝑧 − 𝑥0)𝑝 (𝑡 − 𝑠,�𝑥 − 𝑧�)
𝑝 (𝑡,�𝑥 − 𝑥0�)

,

where we have used the fact that 𝑧− 𝑥0 ∈ T in the equality. By the properties of 𝐶𝑡 given in Lemma 2.1,
we have that

𝐶𝑠𝐶𝑡−𝑠
𝐶𝑡

≤ 𝐶𝑡𝐶𝑡

𝐶𝑡
=𝐶𝑡 ≤ 1 +

√
𝑡

2𝜋
.

Hence, for some universal constant 𝐶 > 0,

𝐺𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧) ≤ 𝐶
(
1 +

√
𝑡
) 𝑝(𝑠, 𝑧 − 𝑥0)𝑝 (𝑡 − 𝑠,�𝑥 − 𝑧�)

𝑝 (𝑡,�𝑥 − 𝑥0�)
.

In order to determine the values of the modulo functions, take into account the fact that 𝑥, 𝑥0, 𝑧 ∈
[−𝜋, 𝜋] and consider the following three cases:

Case I: 𝑥 − 𝑥0 ∈ (𝜋,2𝜋]. In this case, as illustrated in Figure 2, we have

�𝑥 − 𝑥0� = 𝑥 − 𝑥0 − 2𝜋 and �𝑥 − 𝑧� ∈ {𝑥 − 𝑧 + 𝑘 : 𝑘 = −2𝜋,0} .

Hence,

𝑝(𝑠, 𝑧 − 𝑥0)𝑝 (𝑡 − 𝑠,�𝑥 − 𝑧�)
𝑝 (𝑡,�𝑥 − 𝑥0�)

≤ 𝑝(𝑠, 𝑧 − 𝑥0)
𝑝 (𝑡, 𝑥 − 𝑥0 − 2𝜋)

∑
𝑘∈{−2𝜋,0}

𝑝 (𝑡 − 𝑠, 𝑥 − 𝑧 + 𝑘)

=
∑

𝑘∈{−2𝜋,0}

𝑝(𝑡, 𝑥 − 𝑥0 + 𝑘)
𝑝 (𝑡, 𝑥 − 𝑥0 − 2𝜋) × 𝑝𝑡 ,𝑥0 ,𝑥+𝑘 (𝑠, 𝑧). (2.12)

In this case, |𝑥 − 𝑥0 + 𝑘 | ≥ |𝑥 − 𝑥0 − 2𝜋 | for 𝑘 ∈ {0,−2𝜋}. Hence, the ratio of two heat kernels in (2.12)
is bounded by one. Therefore,

𝑝(𝑠, 𝑧 − 𝑥0)𝑝 (𝑡 − 𝑠,�𝑥 − 𝑧�)
𝑝 (𝑡,�𝑥 − 𝑥0�)

≤
∑

𝑘∈{−2𝜋,0}
𝑝𝑡 ,𝑥0 ,𝑥+𝑘 (𝑠, 𝑧).

Figure 2. Illustration of Case I in the proof of Lemma 2.3. Since 𝑥 − 𝑥0 ∈ (𝜋, 2𝜋] and 𝑥, 𝑥0 ∈ [−𝜋, 𝜋], we see that
𝑥 has to situate in (0, 𝜋]. The possible positions of 𝑥0 are given in the blue arc. Since 𝑧 − 𝑥0 ∈ [−𝜋, 𝜋], the possible
positions of 𝑧 are highlighted in the red arc. When computing �𝑥 − 𝑧�, we have two cases illustrated by 𝑧1 and 𝑧2.
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Case II: 𝑥 − 𝑥0 ∈ [−𝜋, 𝜋]. In this case, we have that

�𝑥 − 𝑥0� = 𝑥 − 𝑥0 and �𝑥 − 𝑧� ∈ {𝑥 − 𝑧 + 𝑘 : 𝑘 = −2𝜋,0,2𝜋} .

By the same arguments as in Case I, one can show that the ratio of two heat kernels in (2.12) is bounded
by one and hence,

𝑝(𝑠, 𝑧 − 𝑥0)𝑝 (𝑡 − 𝑠,�𝑥 − 𝑧�)
𝑝 (𝑡,�𝑥 − 𝑥0�)

≤
∑

𝑘∈{−2𝜋,0,2𝜋}
𝑝𝑡 ,𝑥0 ,𝑥+𝑘 (𝑠, 𝑧).

Case III: 𝑥 − 𝑥0 ∈ [−2𝜋,−𝜋). This is the symmetric case of Case I. In this case,

�𝑥 − 𝑥0� = 𝑥 − 𝑥0 + 2𝜋 and �𝑥0 − 𝑥 + 𝑧� ∈ {𝑥 − 𝑥0 + 𝑧 + 𝑘 : 𝑘 = 0,2𝜋} .

By similar arguments, we see that

𝑝(𝑠, 𝑧)𝑝 (𝑡 − 𝑠,�𝑥0 + 𝑧 − 𝑥�)
𝑝 (𝑡,�𝑥0 − 𝑥�)

≤
∑

𝑘∈{0,2𝜋}
𝑝𝑡 ,𝑥0 ,𝑥+𝑘 (𝑠, 𝑧).

Combining the above three cases proves Lemma 2.3 for the case 𝑑 = 1. The generalization to the
case for 𝑑 ≥ 2 is straightforward and we omit the details here.

3. Colored noise on flat torus

In this section, we construct a family of intrinsic Gaussian noises on the flat torus T
𝑑 that we call

colored noise on T
𝑑 that is white in time. Recall that the eigenvectors of the Laplace operator � are

given by exp (𝑖𝑘 · 𝑥), 𝑘 ∈ Z
𝑑 . For any 𝜑 ∈ 𝐿2(T𝑑), there is a unique decomposition

𝜑(𝑥) = (2𝜋)−𝑑/2
∑
𝑘∈Z𝑑

𝑎𝑘 𝑒
𝑖𝑘 ·𝑥 ,

where 𝑎𝑘 are the Fourier coefficients of 𝜑:

𝑎𝑘 = F (𝜑)(𝑘) := (2𝜋)−𝑑/2
∫
T𝑑

𝜑(𝑥)𝑒−𝑖𝑘 ·𝑥d𝑥, for all 𝑘 ∈ Z
𝑑 .

In particular, 𝑎0 = (2𝜋)−𝑑/2
∫
T𝑑 𝜑(𝑥)d𝑥.

We introduce a family of Gaussian noises 	𝑊 on T
𝑑 with parameters 𝛼, 𝜌 ≥ 0 as follows. Let (Ω,F ,P)

be a complete probability space such that for any 𝜑(𝑥) and 𝜓(𝑥) on T
𝑑 and 𝑡, 𝑠 > 0, both 	𝑊

(
1[0,𝑡 ]𝜑

)
and 	𝑊

(
1[0,𝑠]𝜓

)
are centered Gaussian random variables with covariance given by

E
( 	𝑊 (

1[0,𝑡 ]𝜑
) 	𝑊

(
1[0,𝑠]𝜓

) )
= (𝑠 ∧ 𝑡)〈𝜙,𝜓〉𝛼,𝜌 with

〈𝜙,𝜓〉𝛼,𝜌 := 𝜌𝑎0 �̄�0 +
∑
𝑘∈Z𝑑

∗

𝑎𝑘 �̄�𝑘

|𝑘 |2𝛼
and Z

𝑑
∗ := Z

𝑑 \ {0}, (3.1)

where 𝑎𝑘’s and 𝑏𝑘’s are the Fourier coefficients of 𝜑 and 𝜓, respectively.
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For 𝜌 > 0, let H 𝛼,𝜌 be the completion of 𝐿2(T𝑑) under 〈·, ·〉𝛼,𝜌. Then, (Ω,H 𝛼,𝜌,P) gives an abstract
Wiener space. When 𝜌 = 0, some special care is needed in order to identify a suitable Hilbert space
H 𝛼,0. Let 𝐿2

0 be the space of 𝐿2 functions on T
𝑑 such that 𝑎0 = 0. Denote by H 𝛼

0 the completion of
𝐿2

0 under 〈·, ·〉𝛼,𝜌. One could have set H 𝛼,0 =H 𝛼
0 . However, when solving SPDEs and considering the

mild form of the solution in (1.8), one in general would not expect 𝐺 (𝑡 − 𝑠, 𝑥 − ·)𝑢(𝑠, ·) ∈ 𝐿2
0. Hence

it is desirable to consider Wiener integrals 	𝑊
(
1[0,𝑡 ]𝜑

)
where 𝜑 is a function on the torus such that

𝑎0 = (2𝜋)−𝑑/2
∫
T𝑑 𝜑(𝑥)d𝑥 ≠ 0. For this purpose, consider H 𝛼

0 + R := {𝜑 + 𝑐 : 𝜑 ∈ H 𝛼
0 , and 𝑐 ∈ R}. We

can identify H 𝛼
0 +R with H 𝛼

0 through the equivalence relation ∼, in which 𝜑 ∼ 𝜓 if 𝜑−𝜓 is a constant.
Finally, we set

H 𝛼,0 = (H 𝛼
0 +R)/∼ .

With this construction, it is clear that 	𝑊
(
1[0,𝑡 ]𝜑

)
= 	𝑊

(
1[0,𝑡 ] (𝜑 + 𝑐)

)
for any 𝜑 ∈ H 𝛼,0 and 𝑐 ∈ R.

Throughout the rest of our discussion, we will also adopt the short-hand H 𝛼 for H 𝛼,0.

Remark 3.1. It is clear from (3.1) that 𝐿2(T𝑑) ⊂ H 𝛼,𝜌 ⊂ H 𝛽,𝜌 for 0 ≤ 𝛼 < 𝛽. Moreover, the colored
noise becomes the white noise on torus when 𝜌 = 1 and 𝛼 = 0.

Recall that 𝑓𝛼, 𝜌 and 𝑓𝛼 are defined in (1.2) and (1.4) respectively.

Lemma 3.2. Fix arbitrary 𝛼 > 0 and 𝜌 ≥ 0. Let Θ = Θ1,𝑑 be the constant given in (2.6). The following
statements hold:

(i)
∫
T𝑑 𝑓𝛼 (𝑥)d𝑥 = 0;

(ii) 𝑓𝛼 (𝑥) assume both positive and negative values;
(iii) 𝑓𝛼, 𝜌 (𝑥) is bounded from below:

𝑓𝛼, 𝜌 (𝑥) ≥ (2𝜋)−𝑑/2
(
𝜌 − 1

Γ(𝛼 + 1)(2𝜋)𝑑/2
− (2𝜋)𝑑/22𝛼Θ

)
, for all 𝑥 ∈ T

𝑑;

(iv) 𝑓𝛼, 𝜌 (·) is nonnegative when 𝜌 ≥ (2𝜋)−𝑑/2Γ(𝛼 + 1)−1 + (2𝜋)𝑑/22𝛼Θ;
(v) The Fourier coefficients for 𝑓𝛼, 𝜌 are given by

𝜃𝑛 :=
1

(2𝜋)𝑑/2

∫
T𝑑

𝑓𝛼, 𝜌 (𝑥)𝑒−𝑖𝑛·𝑥d𝑥 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜌

(2𝜋)𝑑/2
if 𝑛 = 0

1
|𝑛|2𝛼 (2𝜋)𝑑/2

if 𝑛 ∈ Z
𝑑
∗

; (3.2)

(vi) For any 𝜑 and 𝜓 ∈ H 𝛼,𝜌, it holds that

〈𝜑,𝜓〉𝛼,𝜌 =
∬

T2𝑑
𝜑(𝑥) 𝑓𝛼, 𝜌 (𝑥, 𝑦)𝜓(𝑦)d𝑥d𝑦. (3.3)

As a consequence, the noise introduced in (3.1) can be equivalently expressed by

E
( 	𝑊 (1[0,𝑡 ]𝜑) 	𝑊 (1[0,𝑠]𝜓)

)
= (𝑡 ∧ 𝑠)

∬
T2𝑑

𝜑(𝑥) 𝑓𝛼, 𝜌 (𝑥, 𝑦)𝜓(𝑦)d𝑥d𝑦.

Note that the lower bounds in parts (iii) and (iv) are not optimal.
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Proof. By writing

𝑓𝛼 (𝑥) =
1

Γ(𝛼)

∫ ∞

0
𝑡𝛼−1

(
𝐺 (𝑡, 𝑥) − (2𝜋)−𝑑

)
d𝑡 =

∫ 1

0
+
∫ ∞

1
= 𝐼1 + 𝐼2, (3.4)

thanks to the heat kernel estimate in (2.6), one can apply the dominated convergence theorem to switch
the d𝑥- and the d𝑡-integrals. This yields part (i). Part (ii) is an immediate consequence of part (i). As
for part (iii), from (3.4), we see that

𝐼1 =
1

Γ(𝛼)

∫ 1

0
𝑡𝛼−1

(
𝐺 (𝑡, 𝑥) − 1

(2𝜋)𝑑

)
d𝑡 ≥ − 1

Γ(𝛼)(2𝜋)𝑑

∫ 1

0
𝑡𝛼−1d𝑡 = − 1

Γ(𝛼 + 1)(2𝜋)𝑑
,

where the inequality is due to the positivity of the heat kernel. As for 𝐼2, for the constants Θ = Θ1,𝑑
given in (2.6) and 𝛾 = 1/2,

𝐼2 =
1

Γ(𝛼)

∫ ∞

1
𝑡𝛼−1𝑒−𝛾𝑡𝑒𝛾𝑡

(
𝐺 (𝑡, 𝑥) − 1

(2𝜋)𝑑

)
d𝑡 ≥ − Θ

Γ(𝛼)

∫ ∞

0
𝑡𝛼−1𝑒−𝛾𝑡d𝑡 ≥ −Θ𝛾−𝛼.

This proves part (iii). Part (iv) is a direct consequence of part (iii).
As for part (v), by part (i), we see that 𝜃0 = (2𝜋)−𝑑/2𝜌. For 𝑛 ≠ 0, using the heat kernel represented

via the eigenvectors of the Laplace operator, namely,

𝐺 (𝑡, 𝑥, 𝑦) = (2𝜋)−𝑑
∑
𝑘∈Z𝑑

𝑒−
|𝑘 |2

2 𝑡𝑒𝑖𝑘 ·𝑥𝑒−𝑖𝑘 ·𝑦 , (3.5)

by an application of Fubini’s theorem, we see that

𝜃𝑛 =
1

Γ(𝛼)

∫ ∞

0
𝑡𝛼−1

(
(2𝜋)−𝑑𝑒−|𝑛 |2𝑡

∫
T𝑑

(2𝜋)−𝑑/2d𝑥 − 0
)
=

1
|𝑛|2𝛼 (2𝜋)𝑑/2

.

This proves part (v). Finally, denote the double integral in (3.3) by 𝐼. Then by the Plancherel theorem,
we see that

𝐼 =
〈
𝜑, 𝑓𝛼, 𝜌 ∗ 𝜓

〉
T𝑑

=
∑
𝑘∈Z𝑑

F (𝜑)(𝑘)F ( 𝑓𝛼, 𝜌 ∗ 𝜓)(𝑘)

=
∑
𝑘∈Z𝑑

F (𝜑)(𝑘)
[
(2𝜋)𝑑/2 × F ( 𝑓𝛼, 𝜌)(𝑘) × F (𝜓)(𝑘)

]
= (2𝜋)𝑑/2

∑
𝑛∈Z𝑑

𝑎𝑛𝑏𝑛𝜃𝑛,

where 𝑎𝑛 and 𝑏𝑛 are Fourier coefficients of 𝜑 and 𝜓, respectively, and 𝜃𝑛 ≥ 0 are given in (3.2). This
completes the proof of Lemma 3.2.

Now we introduce some temporal functions that are determined by the noise and will appear in the
Picard iterations in the proof of the main result—Theorem 1.3. Define

𝑘1(𝑠) = 𝑘1 (𝑠;𝛼, 𝜌) :=
∑
𝑘∈Z𝑑

F ( 𝑓𝛼, 𝜌)(𝑘)𝑒−𝑠 |𝑘 |
2
. (3.6)

The next lemma gives some estimates on 𝑘1(𝑠).
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Lemma 3.3. 1. For any 𝛽 > max (−𝛼 + 𝑑/2,0) and 𝑠 > 0, it holds that

𝑘1(𝑠;𝛼, 𝜌) ≤
𝜌

(2𝜋)𝑑/2
+𝐶𝛼,𝛽,𝑑 𝑠

−𝛽 with 𝐶𝛼,𝛽,𝑑 :=
𝛽𝛽𝑒−𝛽

(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∗

1
|𝑘 |2(𝛼+𝛽)

<∞. (3.7)

2. Under Dalang’s condition (1.10), namely, 2(𝛼 + 1) > 𝑑, for all 𝑡 ≥ 0 and 𝛾 > 0, we have that∫ 𝑡

0
𝑘1 (𝑠;𝛼, 𝜌)d𝑠 ≤

𝜌 𝑡

(2𝜋)𝑑/2
+𝐶𝛼,𝑑 , where 𝐶𝛼,𝑑 :=

1
(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∗

1
|𝑘 |2𝛼+2 <∞, (3.8)

and ∫ ∞

0
𝑒−𝛾𝑠𝑘1(𝑠;𝛼, 𝜌)d𝑠 =

𝜌

(2𝜋)𝑑/2

1
𝛾
+ 1
(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∗

1
|𝑘 |2𝛼

(
|𝑘 |2 + 𝛾

) <∞. (3.9)

Proof. (1) From (3.2), we see that

𝑘1 (𝑠) =
𝜌

(2𝜋)𝑑/2
+ 1
(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∗

1
|𝑘 |2𝛼

𝑒−𝑠 |𝑘 |
2

(3.10)

=
𝜌

(2𝜋)𝑑/2
+ 1
(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∗

1
|𝑘 |2(𝛼+𝛽)

𝑒−𝑠 |𝑘 |
2+2𝛽 log( |𝑘 | ) .

Denote 𝑔𝑠,𝛽 (𝑟) := −𝑠𝑟2 + 2𝛽 log(𝑟). By solving 𝑔′𝑠,𝛽 (𝑟) = 0, we find that 𝑔𝑠,𝛽 (𝑟) is maximized at 𝑟0 =√
𝛽/𝑠, and the maximum value is equal to 𝑔𝑠,𝛽 (𝑟0) = 𝛽𝛽𝑠−𝛽𝑒−𝛽 . The condition that 𝛽 > −𝛼 + 𝑑/2

implies that the remaining summation in 𝑘 is finite.
(2) From the expression for 𝑘1 (𝑠) in (3.10), one easily sees that 𝑘1 (𝑠) is non-increasing and nonneg-

ative. Moreover, 𝑘1 (𝑠) is integrable at 𝑠 = 0 because from (3.10),

0 ≤
∫ 𝑡

0
𝑘1 (𝑠)d𝑠 ≤

𝜌 𝑡

(2𝜋)𝑑/2
+ 1
(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∗

1
|𝑘 |2𝛼

∫ ∞

0
d𝑠 𝑒−𝑠 |𝑘 |

2

=
𝜌 𝑡

(2𝜋)𝑑/2
+ 1
(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∗

1
|𝑘 |2𝛼+2 <∞,

where the last inequality is due to Dalang’s condition (1.10). This proves (3.8). The equality in (3.9)
can be proved in the same way. This proves Lemma 3.3.

Let 𝑓 ∗𝛼 denote the Riesz kernel on R
𝑑 and �̂� ∗𝛼 be its Fourier transform, i.e.,

𝑓 ∗𝛼 (𝑥) := |𝑥 |−𝑑+2𝛼 and �̂� ∗𝛼 (𝜉) = 𝑐𝑑,𝛼 |𝜉 |−2𝛼, for all 𝑥 and 𝜉 ∈ R
𝑑 . (3.11)

Similar to (3.6), define

𝑘2 (𝑠;𝛼) = 𝑘2 (𝑠) :=
∫
R𝑑

�̂� ∗𝛼 (𝜉) exp
(
− 𝑠 |𝜉 |

2

2

)
d𝜉 =𝐶𝑑,𝛼 𝑠

𝛼−𝑑/2, (3.12)
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where the last equality is an easy exercise (see, e.g., Example 1.2 of Chen and Kim (2019)). Hence,
Dalang’s condition (1.10) ensures the integrability of 𝑘2 (𝑠) at 𝑠 = 0 and∫ ∞

0
𝑒−𝛾𝑠𝑘2 (𝑠;𝛼)d𝑠 =𝐶′

𝑑,𝛼𝛾
−𝛼+ 𝑑

2 −1 for all 𝛾 > 0. (3.13)

Define ℎ0(𝑡;𝛼, 𝜌) := 1 and inductively for 𝑛 ≥ 1,

ℎ𝑛+1 (𝑡;𝛼, 𝜌) = ℎ𝑛+1 (𝑡) :=
∫ 𝑡

0
ℎ𝑛 (𝑡 − 𝑠)

(
𝑘1 (𝑠) + 𝑘2 (𝑠) + 1

)
d𝑠. (3.14)

The following lemma can be proved in the same way as Lemma 2.6 of Chen and Kim (2019) with
𝑘 (𝑠) there replaced by 𝑘1 (𝑠) + 𝑘2 (𝑠) + 1.

Lemma 3.4. All functions ℎ𝑛 (·), 𝑛 ≥ 1, defined in (3.14) are nondecreasing on R+.

For any 𝜆 ≠ 0, define

𝐻𝜆(𝑡) :=
∞∑
𝑛=0

𝜆2𝑛ℎ𝑛 (𝑡). (3.15)

Lemma 3.5. Suppose that Dalang’s condition (1.10) holds. For all 𝜆 ≠ 0, it holds that

lim sup
𝑡→∞

1
𝑡

log𝐻𝜆(𝑡) ≤ 𝛾0(𝜆) := inf
{
𝛾 : 𝜆2Θ𝛾 < 1

}
<∞, (3.16)

where

Θ𝛾 :=
𝜌

(2𝜋)𝑑/2

1
𝛾
+ 1
(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∗

1
|𝑘 |2𝛼

(
|𝑘 |2 + 𝛾

) +𝐶𝑑,𝛼𝛾
−(𝛼+1−𝑑/2) + 𝛾−1 <∞. (3.17)

Moreover, when 𝜆 is large enough,

𝛾0(𝜆) ≲ 𝜆
max

(
4

2(1+𝛼)−𝑑 , 2
)
. (3.18)

One may check Lemma 2.5 of Chen and Kim (2019) or Lemma A.1 of Balan and Chen (2018) (see
also Foondun and Khoshnevisan (2013)) for similar accounts.

Proof. For any 𝛾 > 0,∫ ∞

0
𝑒−𝛾𝑡𝐻𝜆(𝑡)d𝑡 =

∞∑
𝑛=0

𝜆2𝑛
[∫ ∞

0
𝑒−𝛾𝑡 (𝑘1 (𝑠) + 𝑘2 (𝑠) + 1) d𝑡

]𝑛
=

∞∑
𝑛=0

𝜆2𝑛Θ𝑛
𝛾 , (3.19)

where from (3.9) and (3.13), we obtain the expression of Θ𝛾 in (3.17). Thanks to Dalang’s condi-
tion (1.10), Θ𝛾 is finite. Because Θ𝛾 ↓ 0 as 𝛾 ↑ ∞, we see that 𝛾0(𝜆) in (3.16) is well-defined and is
finite.

It is not easy to compute 𝛾0(𝜆) since the dependence on 𝛾 in Θ𝛾 is implicit. Instead, we can obtain
an estimate of 𝛾0 using (3.7). Let 𝑘 ′1 (𝑠) be the upper bound of 𝑘1 (𝑠) given in(3.7), namely,

𝑘†1 (𝑠) =𝐶𝜌,𝛼,𝛽,𝑑

(
1 + 𝑠−𝛽

)
, for 𝛽 ∈ (max (−𝛼 + 𝑑/2,0) ,1) .
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Accordingly, we define ℎ†𝑛 (𝑡), 𝐻†
𝜆(𝑡), Θ

†
𝛾 , and 𝛾†0 (𝜆). It is clear that

𝐻𝜆(𝑡) ≤ 𝐻†
𝜆(𝑡) for all 𝑡 ≥ 0 and 𝛾0(𝜆) ≤ 𝛾†0 (𝜆).

Now, Θ†
𝛾 has a more explicit expression:

Θ†
𝛾 =

𝜌

(2𝜋)𝑑/2

1
𝛾
+𝐶𝜌,𝛼,𝛽,𝑑

(
𝛾−1 + Γ (1 − 𝛽) 𝛾−1+𝛽

)
+𝐶𝑑,𝛼𝛾

−(𝛼+1−𝑑/2) + 𝛾−1

=𝐶′
𝜌,𝛼,𝛽,𝑑

(
1
𝛾
+ 1
𝛾𝛼+1−𝑑/2

+ 1
𝛾1−𝛽

)
� 1
𝛾1−𝛽 , as 𝛾→∞,

where the asymptotic form is due to the fact that

max
(
−𝛼 + 𝑑

2
,0

)
< 𝛽 < 1 ⇐⇒ 0 < 1 − 𝛽 < min

(
𝛼 + 1 − 𝑑

2
,1

)
.

Therefore, when 𝜆 is large enough we have

𝛾†0 (𝜆) = inf
{
𝛾 : 𝜆2Θ†

𝛾 < 1
}
≲ 𝜆

2
1−𝛽 .

Finally, replacing 𝛽 by max (−𝛼 + 𝑑/2,0) in the above upper bound completes the proof of Lemma 3.5.

4. Resolvent kernel function K𝝀

Let us first introduce some functions:

Definition 4.1. For ℎ, 𝑤 : R+ × T
4𝑑 → R, define the space-time convolution operator “⊲” by

(ℎ ⊲ 𝑤) (𝑡, 𝑥0, 𝑥, 𝑥
′
0, 𝑥

′) :=
∫ 𝑡

0
d𝑠

∬
T2𝑑

d𝑧d𝑧′ℎ (𝑡 − 𝑠, 𝑧, 𝑥, 𝑧′, 𝑥′) 𝑤
(
𝑠, 𝑥0, 𝑧, 𝑥

′
0, 𝑧

′) 𝑓𝛼, 𝜌 (𝑧, 𝑧′).
Definition 4.2. Formally define the functions L𝑛 : R+ × T

4𝑑 → R+ recursively by

L𝑛
(
𝑡, 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′) :=

{
𝐺 (𝑡, 𝑥0, 𝑥)𝐺

(
𝑡, 𝑥′0, 𝑥

′) if 𝑛 = 0,

(L0 ⊲L𝑛−1)
(
𝑡, 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′) otherwise,
(4.1)

and for 𝜆 ≠ 0, define the resolvent K : R+ × T
4𝑑 → R+ by

K𝜆
(
𝑡, 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′) :=
∞∑
𝑛=0

𝜆2𝑛L𝑛
(
𝑡, 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′) . (4.2)

The aim of this section is to prove the following proposition, which shows the well-posedness of L𝑛

and K𝜆 and provides some estimates at the same time:
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Proposition 4.3. There exists a constant 𝐶𝛼,𝜌,𝑑 > 0 such that for all 𝑡 > 0, 𝑥, 𝑥0, 𝑥
′, 𝑥′0 ∈ T

𝑑 , 𝜆 ≠ 0, and
𝑛 ≥ 1, it holds that

L𝑛 (𝑡, 𝑥0, 𝑥, 𝑥
′
0, 𝑥

′) ≤ 𝐶𝑛
𝛼,𝜌,𝑑 𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥

′)ℎ𝑛 (𝑡), (4.3)

and, by denoting 𝐶∗ := 𝜆𝐶1/2
𝛼,𝜌,𝑑

,

K𝜆
(
𝑡, 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′) ≤ 𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥
′)𝐻𝐶∗ (𝑡) <∞. (4.4)

Proof. Notice that we can use the bridge density to rewrite L1 as follows:

L1(𝑡, 𝑥0, 𝑥, 𝑥
′
0, 𝑥

′) =𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥
′)

(∫ 𝑡/2

0
d𝑠 +

∫ 𝑡

𝑡/2
d𝑠

)

×
∬

T2𝑑
d𝑧d𝑧′ 𝐺𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧)𝐺𝑡 ,𝑥′0 ,𝑥

′ (𝑠, 𝑧′) 𝑓𝛼, 𝜌 (𝑧, 𝑧′)

=:𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥
′) (𝐼1 + 𝐼2) . (4.5)

By the symmetry of the Brownian bridge, we only need to estimate 𝐼1:

L1(𝑡, 𝑥0, 𝑥, 𝑥
′
0, 𝑥

′) = 2𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥
′)𝐼1. (4.6)

The proof below consists of five steps. Fix an arbitrary 𝜖 > 0 and we will divide the proof into two
cases corresponding to large time 𝑡 ≥ 𝜖 and small time 𝑡 < 𝜖 in the first two steps, and the value of 𝜖
will be determined in the third step of the proof. We will use 𝐶 to denote a generic constant that may
change values at each appearance.

Step 1. The case for L1 with 𝑡 ≥ 𝜖 . In this case, we are going to use the fact that the fundamental
solution 𝐺 is bounded above and below uniformly for all 𝑡 ≥ 𝜖 . To this end, first observe that by
Lemma 3.2, there exists a 𝜌∗ > 0 large enough such that 𝑓𝛼,𝜌∗ (𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ T

𝑑 . Let 𝜌∗ be the
smallest such 𝜌∗, i.e.,

𝜌∗ := inf
{
𝜌 : 𝑓𝛼, 𝜌 (𝑥, 𝑦) ≥ 0, ∀𝑥, 𝑦 ∈ T

𝑑
}
.

It is readily seen that

0 ≤ | 𝑓𝛼, 𝜌 (𝑥, 𝑦) | ≤ 𝑓𝛼,𝜌 (𝑥, 𝑦), with �̂� := 𝜌 ∨ 𝜌∗. (4.7)

Since 𝑡 ≥ 𝜖 , we can apply Lemma 2.2 to yield that

𝐼1 = |𝐼1 | =

�����
∫ 𝑡/2

0
d𝑠

∬
T2𝑑

d𝑧d𝑧′ 𝐺𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧)𝐺𝑡 ,𝑥′0 ,𝑥
′ (𝑠, 𝑧′) 𝑓𝛼, 𝜌 (𝑧, 𝑧′)

�����
≤ 𝐶𝑑

𝜖

∫ 𝑡/2

0
d𝑠

∬
T2𝑑

d𝑧d𝑧′ 𝐺 (𝑠, 𝑥0, 𝑧)𝐺 (𝑠, 𝑥′0, 𝑧
′) | 𝑓𝛼, 𝜌 (𝑧, 𝑧′) |

≤ 𝐶𝑑
𝜖

∫ 𝑡/2

0
d𝑠

∬
T2𝑑

d𝑧d𝑧′ 𝐺 (𝑠, 𝑥0, 𝑧)𝐺 (𝑠, 𝑥′0, 𝑧
′) 𝑓𝛼,𝜌 (𝑧, 𝑧′) =:𝐶𝑑

𝜖 𝐼∗,
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where we have applied (4.7) in the second inequality. We can evaluate 𝐼∗ using the Fourier series
representations of 𝐺 and 𝑓𝛼,𝜌 to see that

|𝐼∗ | =

����� 1
(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∫ 𝑡/2

0
d𝑠 𝑒2𝑖𝑘 · (𝑥0−𝑥′0 )F

(
𝑓𝛼,𝜌

)
(𝑘)𝑒−𝑠 |𝑘 |2

�����
≤ 1
(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∫ 𝑡/2

0
d𝑠F

(
𝑓𝛼,𝜌

)
(𝑘)𝑒−𝑠 |𝑘 |2

=
1

(2𝜋)𝑑/2

∑
𝑘∈Z𝑑

∫ 𝑡/2

0
d𝑠

[
F

(
𝑓𝛼, 𝜌

)
(𝑘) + F

(
�̂� − 𝜌

(2𝜋)𝑑

)
(𝑘)

]
𝑒−𝑠 |𝑘 |

2

=
1

(2𝜋)𝑑/2

∫ 𝑡/2

0
[𝑘1(𝑠) + ( �̂� − 𝜌)] d𝑠.

Therefore, by enlarging 𝑡/2 to 𝑡 in the above integral and taking into account of the expression 𝐶𝜖

in (2.10), we have proved that when 𝑡 ≥ 𝜖 ,

L1(𝑡, 𝑥0, 𝑥, 𝑥
′
0, 𝑥

′) ≤ 𝐶

(
1 + 1

√
𝜖

)𝑑
𝑒𝑑𝜋

2/𝜖𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥
′)

∫ 𝑡

0
[𝑘1 (𝑠) + ( �̂� − 𝜌)] d𝑠. (4.8)

Step 2. The case for L1 with 𝑡 < 𝜖 . In this case, we embed the torus in R
𝑑; then we apply the

techniques of Chen and Kim (2019) to achieve the upper bound. To this end, recall that the Riesz kernel
𝑓 ∗𝛼 and its Fourier transform �̂� ∗𝛼 on R

𝑑 are specified in (3.11).
From (1.5), we can see that the integrand for 𝐼1 given in (4.5) are 2𝜋-periodic in each component of

𝑧 and 𝑧′. Hence, we can equivalently integrate over the domains: (𝑧, 𝑧′) ∈ T
𝑑 (𝑥0) × T

𝑑 (𝑥′0), where

T
𝑑 (𝑥) := [𝑥1 − 𝜋, 𝑥1 + 𝜋] × · · · × [𝑥𝑑 − 𝜋, 𝑥𝑑 + 𝜋] for all 𝑥 = (𝑥1, · · · , 𝑥𝑑) ∈ R

𝑑 .

Hence,

𝐼1 =
∫ 𝑡/2

0
d𝑠

∫
T𝑑 (𝑥′0 )

d𝑧′
∫
T𝑑 (𝑥0 )

d𝑧 𝐺𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧)𝐺𝑡 ,𝑥′0 ,𝑥
′ (𝑠, 𝑧′) 𝑓𝛼, 𝜌 (𝑧, 𝑧′).

Since both 𝑧 − 𝑥0 and 𝑧′ − 𝑥′0 in the above integral belong to T
𝑑 , we can apply Lemma 2.3 to see that

𝐼1 ≤ 𝐶 (1 + 𝑡)𝑑
∑

𝑘,𝑘′ ∈Π𝑑

∫ 𝑡/2

0
d𝑠

∫
T𝑑 (𝑥′0 )

d𝑧′
∫
T𝑑 (𝑥0 )

d𝑧 × 𝑝𝑡 ,𝑥0 ,𝑥+𝑘 (𝑠, 𝑧)𝑝𝑡 ,𝑥′0 ,𝑥′+𝑘′ (𝑠, 𝑧
′) 𝑓𝛼, 𝜌 (𝑧, 𝑧′),

where we recall that Π := {−2𝜋,0,2𝜋}. By (1.3), we see that for some universal constant 𝐶 > 0,

𝑓𝛼, 𝜌 (𝑧, 𝑧′) = 𝑓𝛼, 𝜌 (�𝑧 − 𝑧′�) ≤ 𝐶
∑

𝑘′′ ∈Π𝑑

𝑓 ∗𝛼, 𝜌 (𝑧 − 𝑧′ + 𝑘 ′′) .

Thanks to the nonnegativity of the integrand, we can apply the above inequality to 𝐼1 and extend the
integration domain from T

𝑑 (𝑥0) × T
𝑑 (𝑥′0) to R

2𝑑 to yield that

𝐼1 ≤ 𝐶 (1 + 𝑡)𝑑
∑

𝑘,𝑘′ ,𝑘′′ ∈Π𝑑

∫ 𝑡/2

0
d𝑠 (1 + 𝑠)𝑑

∬
R2𝑑

d𝑧′d𝑧 𝑓 ∗𝛼, 𝜌 (𝑧 − 𝑧′ + 𝑘 ′′)



PAM with colored noise on the torus 3077

× 𝑝𝑡 ,𝑥0 ,𝑥+𝑘 (𝑠, 𝑧) 𝑝𝑡 ,𝑥′0 ,𝑥′+𝑘′ (𝑠, 𝑧
′) .

We have reduced the problem from T
𝑑 to R

𝑑 . Now we can apply the Plancherel theorem to the above
integral to obtain

𝐼1 = |𝐼1 | ≤𝐶 (1 + 𝑡)𝑑
∫ 𝑡/2

0
d𝑠

∫
R𝑑

d𝜉 𝑒−
𝑠 (𝑡−𝑠)

𝑡 | 𝜉 |2 �̂� ∗𝛼 (𝜉)

≤𝐶 (1 + 𝑡)𝑑
∫ 𝑡/2

0
d𝑠

∫
R𝑑

d𝜉 𝑒−
𝑠
2 | 𝜉 |

2
�̂� ∗𝛼 (𝜉) =𝐶 (1 + 𝑡)𝑑

∫ 𝑡/2

0
d𝑠 𝑘2 (𝑠),

where the second inequality is due to the fact that 𝑠/2 ≤ 𝑠(𝑡 − 𝑠)/𝑡 when 𝑠 ∈ [0, 𝑡/2]. Therefore, we
have proved that when 𝑡 ∈ (0, 𝜖),

L1 (𝑡, 𝑥0, 𝑥, 𝑥
′
0, 𝑥

′) ≤ 𝐶 (1 + 𝜖)𝑑 𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥
′)

∫ 𝑡

0
𝑘2 (𝑠)d𝑠. (4.9)

Note that we use the condition 𝑡 < 𝜖 only in the last step to bound the factor (1 + 𝑡)𝑑 by (1 + 𝜖)𝑑 .

Step 3. Determination of 𝜖 for the estimate of L1. Combining the estimates in both (4.8) and (4.9),
we see that

L1 (𝑡, 𝑥0, 𝑥, 𝑥
′
0, 𝑥

′) ≤𝐶 (𝐶1, 𝜖 +𝐶2, 𝜖 )𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥
′)

∫ 𝑡

0
[𝑘1(𝑠) + 𝑘2 (𝑠) + 1] d𝑠, (4.10)

for all 𝑡 > 0, where

𝐶1, 𝜖 :=
(
1 + 1

√
𝜖

)𝑑
𝑒𝑑𝜋

2/𝜖 and 𝐶2, 𝜖 := (1 + 𝜖)𝑑 .

It is clear that both 𝐶𝑖, 𝜖 are continuous functions of 𝜖 > 0. Since 𝐶1, 𝜖 is monotone decreasing while
𝐶2, 𝜖 is monotone increasing, there exists an unique 𝜖0 > 0 that minimizes the sum of the two, namely
𝜖0 := arg min

(
𝐶1, 𝜖 +𝐶2, 𝜖

)
. Finally, one can choose the constant 𝐶𝛼,𝜌,𝑑 in (4.3) to be 𝐶1, 𝜖0 +𝐶2, 𝜖0 (up

to another factor of generic constant). This completes the proof of (4.3) in the case of 𝑛 = 1.

Step 4. Upper bounds for L𝑛. Suppose now (4.1) holds for 𝑛− 1. By Definition 4.2 and the induction
assumption, we have

L𝑛 =
∫ 𝑡

0
d𝑠

∬
T2𝑑

d𝑧d𝑧′𝐺 (𝑡 − 𝑠, 𝑧, 𝑥)𝐺 (𝑡 − 𝑠, 𝑧′, 𝑥′)L𝑛−1(𝑠, 𝑥0, 𝑧, 𝑥
′
0, 𝑧

′) 𝑓𝛼, 𝜌 (𝑧, 𝑧′)

≤𝐶𝑛−1𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥
′)

×
∫ 𝑡

0
d𝑠 ℎ𝑛−1(𝑠)

∬
T2𝑑

d𝑧d𝑧′𝐺𝑡 ,𝑥0 ,𝑥 (𝑠, 𝑧)𝐺𝑡 ,𝑥′0 ,𝑥
′ (𝑠, 𝑧′) 𝑓𝛼, 𝜌 (𝑧, 𝑧′). (4.11)

Using the fact that ℎ𝑛 (𝑡) is nondecreasing (see Lemma 3.4) and the symmetry of Brownian bridge, we
see that

L𝑛
(
𝑡, 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′) ≤ 2𝐶𝑛−1𝐺 (𝑡, 𝑥0, 𝑥)𝐺 (𝑡, 𝑥′0, 𝑥
′)𝐼𝑛 (𝑡),



3078 L. Chen, O. Cheng and W. Vickery

where

𝐼𝑛 (𝑡) :=
∫ 𝑡/2

0
d𝑠 ℎ𝑛−1(𝑡 − 𝑠)

∬
T2𝑑

d𝑧d𝑧′𝐺𝑡 ,𝑥,𝑥0 (𝑠, 𝑧)𝐺𝑡 ,𝑥′ ,𝑥′0
(𝑠, 𝑧′) 𝑓𝛼, 𝜌 (𝑧, 𝑧′).

Now, one can carry out the same three steps as the proof of Proposition 4.3 to bound 𝐼𝑛 (𝑡):

𝐼𝑛 (𝑡) ≤𝐶
∫ 𝑡/2

0
ℎ𝑛−1(𝑡 − 𝑠) (𝑘1(𝑠) + 𝑘2 (𝑠) + 1) d𝑠

≤𝐶
∫ 𝑡

0
ℎ𝑛−1(𝑡 − 𝑠) (𝑘1 (𝑠) + 𝑘2(𝑠) + 1) d𝑠 =𝐶ℎ𝑛 (𝑡).

This completes the proof of (4.3).

Step 5. Upper bound for the resolvent K. Finally, the estimate of K in (4.4) is a direct consequence
of the estimate of L𝑛 in (4.3) and the definition of 𝐻𝜆(𝑡) in (3.15). This completes the whole proof of
Proposition 4.3.

5. Proof of Theorem 1.3

Now we are ready to introduce the mild solution to (1.6) and establish its well-posedness. Let 	𝑊 be the
centered and spatially homogeneous Gaussian noise introduced above, defined on a complete probabil-
ity space (Ω,F ,P). Let

{
𝑊𝑡 (𝐴); 𝑡 ≥ 0, 𝐴 ∈ B(T𝑑)

}
be the martingale measure associated to the noise

	𝑊 in the sense of Walsh Walsh (1986), where B
(
T
𝑑
)

refers to the Borel 𝜎-algebra on T
𝑑 ⊆ R

𝑑 . Let
{F𝑡 }𝑡≥0 be the underlying augmented filtration generated by 	𝑊

F𝑡 = 𝜎 {𝑊𝑠 (𝐴) : 0 ≤ 𝑠 ≤ 𝑡, 𝐴 ∈ B(T)} ∨N ,

where N is the 𝜎-field generated by all P-null sets in F .

Definition 5.1. A process 𝑢 =
{
𝑢(𝑡, 𝑥); 𝑡 > 0, 𝑥 ∈ T

𝑑
}

is called a random field solution or the mild
solution to (1.6) if:

(i) 𝑢 is adapted, i.e., for each 𝑡 > 0 and 𝑥 ∈ T
𝑑 , 𝑢(𝑡, 𝑥) is F𝑡 -measurable;

(ii) 𝑢 is jointly measurable with respect to B
(
(0,∞) × T

𝑑
)
× F ;

(iii) for each 𝑡 > 0 and 𝑥 ∈ T
𝑑 , it holds that

E

[∫ 𝑡

0
d𝑠

∬
T2𝑑

d𝑦 d𝑦′𝐺 (𝑡 − 𝑠, 𝑥, 𝑦)𝑢(𝑠, 𝑦) 𝑓 (𝑦, 𝑦′)𝐺 (𝑡 − 𝑠, 𝑥, 𝑦′)𝑢(𝑠, 𝑦′)
]
<∞; (5.1)

(iv) for each 𝑡 > 0 and 𝑥 ∈ T
𝑑 , 𝑢 satisfies (1.8) a.s. for all (𝑡, 𝑥) ∈ (0,∞) × T

𝑑 .

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The existence and uniqueness in 𝐿2(Ω), as well as the two-point correlation
estimates of the solution to (1.6), can be established from the standard Picard iteration. More precisely,
with Proposition 4.3, we can carry out the same six steps as those in the proof of Theorem 2.4 in
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Section 3.3 of Chen and Dalang (2015); One may also check the proofs of Theorems 1.4 and 1.5
of Candil, Chen and Lee (2024).

It remains to prove the 𝑝-th moment bounds in (1.12). One can follow the same strategy as in the
proof of Theorem 1.7 of Chen and Huang (2019) to establish (1.12); see the proof of part (ii) of Theo-
rem 1.4 in Section 5.1 of Candil, Chen and Lee (2024) for another presentation. In essence, let 𝑢𝑛 (𝑡, 𝑥)
be the immature solutions in the Picard iterations, namely 𝑢0(𝑡, 𝑥) = 𝐽0(𝑡, 𝑥), and for 𝑛 ≥ 1,

𝑢𝑛 (𝑡, 𝑥) = 𝐽0 (𝑡, 𝑥) + 𝜆
∫ 𝑡

0

∫
T𝑑

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦)𝑢𝑛−1(𝑠, 𝑦)𝑊 (d𝑠,d𝑦).

An application of the Burkholder-Davis-Gundy inequality (BDG inequality) shows that their 𝑝-th mo-
ments satisfy the following integral inequality

| |𝑢𝑛+1 (𝑡, 𝑥) | |2𝑝 ≤ 2𝐽2
0 (𝑡, 𝑥) + 8𝑝𝜆2

∫ 𝑡

0
d𝑠

∬
T2𝑑

d𝑦d𝑦′ 𝑓𝛼, 𝜌 (𝑦, 𝑦′)𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) | |𝑢𝑛 (𝑠, 𝑦) | |𝑝

×𝐺 (𝑡 − 𝑠, 𝑥, 𝑦′) | |𝑢𝑛 (𝑠, 𝑦′) | |𝑝 . (5.2)

Then one can show that

𝑔𝑛 (𝑡, 𝑥) :=
√

2𝐽0(𝑡, 𝑥)
(

𝑛∑
𝑘=0

[
16𝑝𝜆2] 𝑘 ℎ𝑘 (𝑡)

)1/2

is a super solution to (5.2), namely, | |𝑢𝑛 (𝑡, 𝑥) | |𝑝 ≤ 𝑔𝑛 (𝑡, 𝑥). Then one can show that for (𝑡, 𝑥) fixed,
{𝑢𝑛 (𝑡, 𝑥) : 𝑛 ≥ 0} is a Cauchy sequence in 𝐿𝑝 (Ω). Finally, the memorization relation holds in the limit:

| |𝑢(𝑡, 𝑥) | |𝑝 = lim
𝑛→∞

||𝑢𝑛 (𝑡, 𝑥) | |𝑝 ≤ lim
𝑛→∞

𝑔𝑛 (𝑡, 𝑥) =
√

2𝐽0 (𝑡, 𝑥)
( ∞∑
𝑘=0

[
16𝑝𝜆2] 𝑘 ℎ𝑘 (𝑡)

)1/2

,

where ℎ𝑘 (𝑡) are given in (3.14). This completes the sketch of the proof of (1.12). We refer the interested
readers to the proof of Theorem 1.7 of Chen and Huang (2019) or the proof of part (ii) of Theorem 1.4
in Section 5.1 of Candil, Chen and Lee (2024) for more details.

Finally, when 𝜆2𝑝 is large enough, one can obtain (1.13) from the estimate of 𝛾0(𝜆) in (3.18). This
completes the whole proof of Theorem 1.3.

6. Lower bound for the second moment

Proof of Theorem 1.5. Fix an arbitrary 𝜖 > 0. Under condition (1.14), thanks to Lemma 2.2, one can
derive the corresponding lower bound in step 1 of the proof of Proposition 4.3. In particular,

L1(𝑡, 𝑥0, 𝑥, 𝑥
′
0, 𝑥

′) ≥ 𝑐𝑑𝜖

∫ 𝑡/2

0
d𝑠

∬
T2𝑑

d𝑧d𝑧′ 𝐺 (𝑠, 𝑥0, 𝑧)𝐺 (𝑠, 𝑥′0, 𝑧
′) 𝑓 (𝑧, 𝑧′)

≥ 𝑐𝑑𝜖𝐶 𝑓

∫ 𝑡/2

0
d𝑠

∬
T2𝑑

d𝑧d𝑧′ 𝐺 (𝑠, 𝑥0, 𝑧)𝐺 (𝑠, 𝑥′0, 𝑧
′) = 𝑐𝑑𝜖𝐶 𝑓

𝑡

2
,

whenever 𝑡 ≥ 𝜖 , where the constant 𝑐𝜖 is given in (2.10).
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A lower bound of L2 can be derived similarly:

L2
(
𝑡, 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′)
=
∫ 𝑡

0
d𝑠

∬
T2𝑑

d𝑧d𝑧′𝐺 (𝑠, 𝑧, 𝑥)𝐺 (𝑠, 𝑧′, 𝑥′)L1 (𝑡 − 𝑠, 𝑥0, 𝑧, 𝑥
′
0, 𝑧

′) 𝑓 (𝑧, 𝑧′)

≥
∫ 𝑡

2

0
d𝑠

∬
T2𝑑

d𝑧d𝑧′𝐺 (𝑠, 𝑧, 𝑥)𝐺 (𝑠, 𝑧′, 𝑥′)L1 (𝑡 − 𝑠, 𝑥0, 𝑧, 𝑥
′
0, 𝑧

′) 𝑓 (𝑧, 𝑧′)

≥
𝑐𝑑𝜖𝐶 𝑓

2

∫ 𝑡
2

0
d𝑠 (𝑡 − 𝑠)

∬
T2𝑑

d𝑧d𝑧′𝐺 (𝑠, 𝑧, 𝑥)𝐺 (𝑠, 𝑧′, 𝑥′) 𝐶 𝑓

=
𝑐𝑑𝜖𝐶

2
𝑓

2
1
2

(
𝑡2 −

( 𝑡
2

)2
)
≥
𝑐𝑑𝜖𝐶

2
𝑓

2
1
2
𝑡2

2
.

Finally, an induction argument together with the elementary relation 𝑡𝑛 − (𝑡/2)𝑛 ≥ 𝑡𝑛/2 gives us that,
uniformly for all 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′ ∈ T
𝑑 ,

L𝑛
(
𝑡, 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′) ≥ 𝑐𝑑𝜖
2

1
𝑛!

(
𝐶 𝑓 𝑡

2

)𝑛
,

and hence, for any 𝜆 ≠ 0,

K𝜆
(
𝑡, 𝑥0, 𝑥, 𝑥

′
0, 𝑥

′) ≥ 𝑐𝑑𝜖
2

exp
(
𝐶 𝑓 𝑡

2

)
.

Then an application of (1.11) proves Theorem 1.5.

When the initial condition is given by a bounded measurable function, one has the Feynman-Kac
representation for second moment of the solution to the parabolic Anderson model; see Proposition 4.3
of Hu and Nualart (2009) for the case of R𝑑 or Carmona and Molchanov (1994) for the case of Z𝑑 .
Taking advantage of this Feynman-Kac representation, we are able to prove the exponential lower
bound of the second moment for all 𝜌 > 0. Before proceeding, we would like to make two remarks:

Remark 6.1. We would like to highlight that, instead of bounded initial conditions, the Feynman-
Kac representations for the second moment of the parabolic Anderson model on R

𝑑 , starting from
rough initial conditions, have also been explored in the literature. Here, “rough initial conditions”
refer specifically to cases where the initial condition 𝜇 is a signed Borel measure satisfying:∫

R𝑑
𝑒−𝑎 |𝑥 |

2 |𝜇 | (d𝑥) <∞ for all 𝑎 > 0.

For more details, see (Chen, Hu and Nualart, 2017, Theorem 2.1), (Huang, Lê and Nualart, 2017a,
Proposition 4.4), and (Huang, Lê and Nualart, 2017b, Proposition 4.3).

Remark 6.2. With the Feynman-Kac representations for the moments, one should be able to carry out
the combinatorial arguments using the Feynman diagrams to derive the lower bounds for the general
𝑝-th moments, 𝑝 ≥ 2, that match the corresponding upper bounds in (1.13). This approach has been
recently applied in cases of the whole space R

𝑑; see Hu and Wang (2024) and Chen, Guo and Song
(2024). We plan to explore this topic in future research.
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Proof of Theorem 1.6. Without loss of generality, we may assume the initial condition is the constant
one. The case where the initial conditions are bounded away from zero can be reduced to this case. The
Feynman-Kac formula for the second moment then has the following form:

E
[
𝑢(𝑡, 𝑥)2] = E𝑥

[
exp

{∫ 𝑡

0
𝑓𝛼, 𝜌 (𝐵𝑠 , 𝐵𝑠)d𝑠

}]
, (6.1)

where 𝐵𝑠 and 𝐵𝑠 are two independent Brownian motions on torus both starting from 𝑥, and E𝑥 refers
to the expectation with respect to both Brownian motions. We apply Jensen’s inequality to obtain that

E
[
𝑢(𝑡, 𝑥)2] ≳ [

exp
{∫ 𝑡

0
E𝑥

(
𝑓𝛼, 𝜌

(
𝐵𝑠, 𝐵𝑠

))
d𝑠

}]
. (6.2)

Now recall the definition of 𝑓𝛼, 𝜌 in (1.4), the spectral representation of the heat kernel 𝐺 (𝑡, 𝑥, 𝑦)
in (3.5). We use the fact that

E𝑥

(
(2𝜋)−𝑑/2𝑒𝑖𝑘 · (𝐵𝑠−�̃�𝑠 )

)
= 𝑒−|𝑘 |

2𝑠 ,

to simplify the right hand-side of (6.2) as follows,[∫ 𝑡

0
E𝑥

(
𝑓𝛼, 𝜌

(
𝐵𝑠, �̃�𝑠

) )
d𝑠

]
=

𝜌 𝑡

(2𝜋)𝑑
+ 2𝛼

(2𝜋)𝑑
∑
𝑘∈Z𝑑

∗

|𝑘 |−2𝛼
∫ 𝑡

0
𝑒−|𝑘 |

2𝑠d𝑠

=
𝜌 𝑡

(2𝜋)𝑑
+ 2𝛼

(2𝜋)𝑑
∑
𝑘∈Z𝑑

∗

|𝑘 |−2𝛼−2
[
1 − 𝑒−|𝑘 |

2𝑡
]
∼ 𝜌 𝑡

(2𝜋)𝑑
, as 𝑡 ↑∞.

The proof is thus completed.

The exponential lower bound suggests full intermittency for the solution. As explained in the intro-
duction, the exponential growth of the second moment is due to ergodicity of Brownian motion on a
compact manifold. The time average should converge to the space average,

1
𝑡

∫ 𝑡

0
𝑓𝛼, 𝜌 (𝐵𝑠 − 𝐵𝑠)d𝑠→

∫
T𝑑

𝑓𝛼, 𝜌 (𝑥)d𝑥 =
𝜌

(2𝜋)𝑑
,

in lim sup at a rate of
√

log log 𝑡 (see Brosamler (1983)). It is clear that our argument above is quite
generic and does not depend on the fact that the state space considered here is a torus (as opposed to a
general compact manifold).

It is well known that there is a phase transition in the intensity parameter 𝜆 (in terms of the growth
rate of the second moment) in R

𝑑 for 𝑑 ≥ 3 (see, e.g., Chen and Kim (2019)). This is a result of the
fact that Brownian motion is transient when 𝑑 ≥ 3. We do not see this phase transition on the torus as
long as 𝜌 > 0 regardless of the value of 𝛼: the second moment also blows up exponentially in time.
However, it is not clear what happens when 𝜌 = 0.

7. Hölder continuity

We first establish the following lemma, the proof of which is similar to Lemma 3.1 of Chen and Huang
(2019).
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Lemma 7.1. There exists some universal constant 𝐶 > 0 such that for all 𝛽 ∈ (0,1], 𝑥, 𝑦 ∈ T
𝑑 , and

𝑡′ ≥ 𝑡 > 0,

|𝐺 (𝑡, 𝑥) −𝐺 (𝑡′, 𝑥) | ≤ 𝐶𝑡−𝛽/2𝐺 (2𝑡′, 𝑥) (𝑡′ − 𝑡)𝛽/2 and (7.1)

|𝐺 (𝑡, 𝑥) −𝐺 (𝑡, 𝑦) | ≤ 𝐶𝑡−𝛽/2 [𝐺 (2𝑡, 𝑥) +𝐺 (2𝑡, 𝑦)] dist(𝑥, 𝑦)𝛽 , (7.2)

where we recall that dist(𝑥, 𝑦) = | �𝑥 − 𝑦� |.

Proof. In the proof, we use 𝐶 to denote a generic constant which may change its value at each appear-
ance. Choose and fix an arbitrary 𝛽 ∈ (0,1]. We start with (7.2). From the mean value theorem, we
have for some 𝜉 := 𝜉 (𝑥, 𝑦) ∈ T

𝑑 such that

|𝐺 (𝑡, 𝑥) −𝐺 (𝑡, 𝑦) | = |∇𝐺 (𝑡, 𝜉) | × |�𝑥 − 𝑦�|

=

[ ∑
𝑘∈Z𝑑

(2𝜋𝑡)−𝑑/2 |𝜉 + 2𝜋𝑘 |
𝑡

𝑒−
|𝜉+2𝜋𝑘 |2

2𝑡

]
× dist(𝑥, 𝑦)

≤
[
𝐶
√
𝑡

∑
𝑘∈Z𝑑

(4𝜋𝑡)−𝑑/2𝑒−
|𝜉+2𝜋𝑘 |2

4𝑡

]
× dist(𝑥, 𝑦)

=
𝐶
√
𝑡
𝐺 (2𝑡, 𝜉) dist(𝑥, 𝑦) ≤ 𝐶

√
𝑡
[𝐺 (2𝑡, 𝑥) +𝐺 (2𝑡, 𝑦)] dist(𝑥, 𝑦) ,

where the last inequality can be obtained via scaling arguments (see, e.g., the proof of Lemma 3.1
of Chen and Huang (2019)). We can apply the above inequality and (2.5) to see that

|𝐺 (𝑡, 𝑥) −𝐺 (𝑡, 𝑦) | = |𝐺 (𝑡, 𝑥) −𝐺 (𝑡, 𝑦) |𝛽 |𝐺 (𝑡, 𝑥) −𝐺 (𝑡, 𝑦) |1−𝛽

≤ 𝐶

𝑡𝛽/2
[𝐺 (2𝑡, 𝑥) +𝐺 (2𝑡, 𝑦)]𝛽𝑑 dist(𝑥, 𝑦)𝛽 [𝐺 (2𝑡, 𝑥) +𝐺 (2𝑡, 𝑦)] (1−𝛽)𝑑

=
𝐶

𝑡𝛽/2
[𝐺 (2𝑡, 𝑥) +𝐺 (2𝑡, 𝑦)] dist(𝑥, 𝑦)𝛽 ,

which proves that (7.2). To prove (7.1), observe that

|𝐺 (𝑡, 𝑥) −𝐺 (𝑡′, 𝑥) | ≤

����� ∑
𝑘∈Z𝑑

(2𝜋𝑡)−𝑑/2𝑒−
|𝑥+2𝜋𝑘 |2

2𝑡 − (2𝜋𝑡′)−𝑑/2𝑒−
|𝑥+2𝜋𝑘 |2

2𝑡

+(2𝜋𝑡′)−𝑑/2𝑒−
|𝑥+2𝜋𝑘 |2

2𝑡 − (2𝜋𝑡′)−𝑑/2𝑒−
|𝑥+2𝜋𝑘 |2

2𝑡′

����
≤ 𝑡𝑑/2

���(𝑡′)−𝑑/2 − 𝑡𝑑/2
���𝐺 (𝑡, 𝑥) +

����� ∑
𝑘∈Z𝑑

(2𝜋𝑡′)−𝑑/2
(
𝑒−

|𝑥+2𝜋𝑘 |2
2𝑡 − 𝑒−

|𝑥+2𝜋𝑘 |2
2𝑡′

)�����
=: 𝐼1 + 𝐼2.
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Following inequality (3.3) in Chen and Huang (2019), we find that 𝐼1 ≤ 𝐶𝑡−𝛽/2 |𝑡′ − 𝑡 |𝛽/2𝐺 (𝑡, 𝑥). As
for 𝐼2, from the mean value theorem, we can deduce that for some 𝜉 ∈ [𝑡, 𝑡′],

𝐼2 =
∑
𝑘∈Z𝑑

(2𝜋𝑡′)−𝑑/2 |𝑥 + 2𝜋𝑘 |2

(2𝜉)2
|𝑡′ − 𝑡 | 𝑒−

|𝑥+2𝜋𝑘 |2
2𝜉 ≤ 𝐶

∑
𝑘∈Z𝑑

(2𝜋𝑡′)−𝑑/2 1
2𝜉

|𝑡′ − 𝑡 | 𝑒−
|𝑥+2𝜋𝑘 |2

4𝜉

≤ 𝐶
∑
𝑘∈Z𝑑

(2𝜋𝑡′)−𝑑/2 1
2𝜉

|𝑡′ − 𝑡 | 𝑒−
|𝑥+2𝜋𝑘 |2

4𝜉 ≤ 𝐶
|𝑡′ − 𝑡 |
𝑡

𝐺 (2𝑡′, 𝑥).

Together with the fact that 𝐼2 ≤ 𝐺 (𝑡′, 𝑥), we see that

𝐼2 = 𝐼
𝛽/2
2 𝐼

1−𝛽/2
2 ≤ 𝐶

[
|𝑡′ − 𝑡 |
𝑡

𝐺 (2𝑡′, 𝑥)
]𝛽/2

𝐺 (𝑡′, 𝑥)1−𝛽/2 ≤ 𝐶𝑡−𝛽/2 |𝑡′ − 𝑡 |𝛽/2𝐺 (2𝑡′, 𝑥).

Combining the bounds for 𝐼1 and 𝐼2 proves (7.1).

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. We need only control the Hölder modulus of

𝐼 (𝑡, 𝑥) :=
∬

(0,𝑡 ]×T𝑑
𝐺 (𝑡 − 𝑠, 𝑥, 𝑦)𝜆𝑢(𝑠, 𝑦)𝑊 (d𝑠,d𝑦).

Fix an arbitrary 𝑛 ≥ 1. Following Chen and Huang (2019), we need to compute the 𝑝-th moment
increments

| |𝐼 (𝑡, 𝑥) − 𝐼 (𝑡′, 𝑥′) | |2𝑝 ≤ 𝐶 [𝐼1 (𝑡, 𝑥, 𝑥′) + 𝐼2 (𝑡, 𝑡′, 𝑥′) + 𝐼3 (𝑡, 𝑡′, 𝑥)] ,

for 𝑡, 𝑡′ ∈ [1/𝑛, 𝑛] and 𝑥, 𝑥′ ∈ T
𝑑 with 𝑡′ > 𝑡, where 𝐼1, 𝐼2, and 𝐼3 are defined as follows:

𝐼1 (𝑡, 𝑥, 𝑥′) :=
∫ 𝑡

0
d𝑠

∬
T2𝑑

d𝑦1d𝑦2 𝑓𝛼, 𝜌 (𝑦1, 𝑦2) |𝐺 (𝑡 − 𝑠, 𝑥, 𝑦1) −𝐺 (𝑡 − 𝑠, 𝑥′, 𝑦1) |

× |𝐺 (𝑡 − 𝑠, 𝑥, 𝑦2) −𝐺 (𝑡 − 𝑠, 𝑥′, 𝑦2) | | |𝑢(𝑠, 𝑦1) | |𝑝 | |𝑢(𝑠, 𝑦2) | |𝑝 ;

𝐼2 (𝑡, 𝑡′, 𝑥′) :=
∫ 𝑡

0
d𝑠

∬
T2𝑑

d𝑦1d𝑦2 𝑓𝛼, 𝜌 (𝑦1, 𝑦2) |𝐺 (𝑡 − 𝑠, 𝑥′, 𝑦1) −𝐺 (𝑡′ − 𝑠, 𝑥′, 𝑦1) |

× |𝐺 (𝑡 − 𝑠, 𝑥′, 𝑦2) −𝐺 (𝑡′ − 𝑠, 𝑥′, 𝑦2) | | |𝑢(𝑠, 𝑦1) | |𝑝 | |𝑢(𝑠, 𝑦2) | |𝑝 ;

𝐼3 (𝑡, 𝑡′, 𝑥′) :=
∫ 𝑡 ′

𝑡
d𝑠

∬
T2𝑑

d𝑦1d𝑦2 𝑓𝛼, 𝜌 (𝑦1, 𝑦2)𝐺 (𝑡′ − 𝑠, 𝑥′, 𝑦1)

×𝐺 (𝑡′ − 𝑠, 𝑥′, 𝑦2) | |𝑢(𝑠, 𝑦1) | |𝑝 | |𝑢(𝑠, 𝑦2) | |𝑝 .

In the following, we use𝐶𝑛 to denote a generic constant that may depend on 𝑛 and may change its value
at each occurrence.
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To control 𝐼1, from the 𝑝-th moment formula (1.12), we see that

𝐼1 (𝑡, 𝑥, 𝑥′) ≤𝐶𝑛

∫ 𝑡

0
d𝑠

∬
T2𝑑

d𝑦1d𝑦2 𝑓𝛼, 𝜌 (𝑦1, 𝑦2)
∬

T2𝑑
𝜇(d𝑧1)𝜇(d𝑧2)

×𝐺 (𝑠, 𝑦1, 𝑧1) |𝐺 (𝑡 − 𝑠, 𝑥, 𝑦1) −𝐺 (𝑡 − 𝑠, 𝑥′, 𝑦1) |

×𝐺 (𝑠, 𝑦2, 𝑧2) |𝐺 (𝑡 − 𝑠, 𝑥, 𝑦2) −𝐺 (𝑡 − 𝑠, 𝑥′, 𝑦2) | .

(7.3)

We can then apply (7.2) to obtain that for all 𝛽 ∈ (0,1),

|𝐺 (𝑡 − 𝑠, 𝑥, 𝑦1) −𝐺 (𝑡 − 𝑠, 𝑥′, 𝑦1) |

= |𝐺 (𝑡 − 𝑠,�𝑥 − 𝑦1�) −𝐺 (𝑡 − 𝑠,�𝑥′ − 𝑦1�)|

≤ 𝐶 [𝐺 (2(𝑡 − 𝑠),�𝑥 − 𝑦1�) +𝐺 (2(𝑡 − 𝑠),�𝑥′ − 𝑦1�)]
dist(𝑥, 𝑥′)𝛽

(𝑡 − 𝑠)𝛽/2

=𝐶 [𝐺 (2(𝑡 − 𝑠), 𝑥, 𝑦1) +𝐺 (2(𝑡 − 𝑠), 𝑥′, 𝑦1)]
dist(𝑥, 𝑥′)𝛽

(𝑡 − 𝑠)𝛽/2
,

where we have used the fact that

dist(�𝑥 − 𝑦1� ,�𝑥′ − 𝑦1�) = |� �𝑥 − 𝑦1� − �𝑥′ − 𝑦1� �| = |�𝑥 − 𝑥′�| = dist(𝑥, 𝑥′) .

Hence,

𝐺 (𝑠, 𝑦1, 𝑧1) |𝐺 (𝑡 − 𝑠, 𝑥, 𝑦1) −𝐺 (𝑡 − 𝑠, 𝑥′, 𝑦1) |

≤ 𝐶𝐺 (2𝑠, 𝑦1, 𝑧1) [𝐺 (2(𝑡 − 𝑠), 𝑥, 𝑦1) +𝐺 (2(𝑡 − 𝑠), 𝑥′, 𝑦1)]
dist(𝑥, 𝑥′)𝛽

(𝑡 − 𝑠)𝛽/2

=𝐶
dist(𝑥, 𝑥′)𝛽

(𝑡 − 𝑠)𝛽/2

[
𝐺 (2𝑡, 𝑥, 𝑧1)𝐺2𝑡 ,𝑥,𝑧1 (2𝑠, 𝑦1) +𝐺 (2𝑡, 𝑥′, 𝑧1)𝐺2𝑡 ′ ,𝑥′ ,𝑧1 (2𝑠, 𝑦1)

]
,

where we have used the density for the pinned Brownian motion; see (2.7). Therefore, by plugging
the above upper bound and the corresponding one with (𝑦1, 𝑧1) replaced by (𝑦2, 𝑧2) back to (7.3), we
obtain four terms in the expansion:

𝐼1 (𝑡, 𝑥, 𝑥′) ≤
4∑

𝑘=1

𝐼1,𝑘 (𝑡, 𝑥, 𝑥′).

For 𝐼1,1, we have

𝐼1,1 (𝑡, 𝑥, 𝑥′) ≤𝐶𝑛 dist(𝑥, 𝑥′)2𝛽 𝐽0(2𝑡, 𝑥)𝐽0 (2𝑡, 𝑥)
∫ 𝑡

0
d𝑠

1
(𝑡 − 𝑠)𝛽

×
∬

T2𝑑
d𝑦1d𝑦2 𝑓𝛼, 𝜌 (𝑦1, 𝑦2)𝐺2𝑡 ,𝑥,𝑧1 (2𝑠, 𝑦1)𝐺2𝑡 ,𝑥,𝑧1 (2𝑠, 𝑦2) .
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Now an application of Lemma 2.3 shows that

𝐼1,1 (𝑡, 𝑥, 𝑥′) ≤𝐶𝑛 dist(𝑥, 𝑥′)2𝛽 𝐽0(2𝑡, 𝑥)𝐽0 (2𝑡, 𝑥)
∫ 𝑡

0
d𝑠

1
(𝑡 − 𝑠)𝛽

×
∬

T2𝑑
d𝑦1d𝑦2 𝑓𝛼, 𝜌 (𝑦1, 𝑦2)

∑
𝑘,𝑘′ ∈Π𝑑

𝑝2𝑡 ,𝑥,𝑧1+𝑘 (2𝑠, 𝑦1) 𝑝2𝑡 ,𝑥,𝑧1+𝑘′ (2𝑠, 𝑦2) .

By the same arguments as Step 2 of the proof of Theorem 1.3, we obtain that

𝐼1,1 (𝑡, 𝑥, 𝑥′) ≤𝐶𝑛 dist(𝑥, 𝑥′)2𝛽 𝐽2
0 (2𝑡, 𝑥)

∫ 𝑡

0
d𝑠

1
(𝑡 − 𝑠)𝛽

∬
R2𝑑

d𝑦1d𝑦2 𝑓 ∗𝛼, 𝜌 (𝑦1 − 𝑦2 + 𝑘 ′′)

×
∑

𝑘,𝑘′ ,𝑘′′ ∈Π𝑑

𝑝2𝑡 ,𝑥,𝑧1+𝑘 (2𝑠, 𝑦1) 𝑝2𝑡 ,𝑥,𝑧1+𝑘′ (2𝑠, 𝑦2)

≤𝐶𝑛 dist(𝑥, 𝑥′)2𝛽 𝐽2
0 (2𝑡, 𝑥)

∫ 𝑡

0

𝑘2 (𝑠)
𝑠𝛽

d𝑠

=𝐶𝑛 dist(𝑥, 𝑥′)2𝛽 𝐽2
0 (2𝑡, 𝑥)

∫ 𝑡

0
𝑠𝛼−𝑑/2−𝛽d𝑠,

where the last step is due to (3.12). Therefore, provided that 𝛽 < 1 + 𝛼 − 𝑑/2 ∈ (0,1) (recall that 𝛼 ∈
(0, 𝑑/2)), we have

𝐼1,1 (𝑡, 𝑥, 𝑥′) ≤ 𝐶𝑛 dist(𝑥, 𝑥′)2𝛽 𝐽2
0 (2𝑡, 𝑥).

The computations for the 𝐼1,2, 𝐼1,3, 𝐼1,4 are similar. Combining all these bounds, we conclude that

𝐼1 (𝑡, 𝑥, 𝑥′) ≤ 𝐶𝑛 (𝐽0 (2𝑡, 𝑥) + 𝐽0 (2𝑡, 𝑥′))2 dist(𝑥, 𝑥′)2𝛽 .

The proof for the time increments, namely, 𝐼2 and 𝐼3, is similar, which will be omitted here.
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Supplementary Material

Supplement to “Parabolic Anderson model with colored noise on the torus” (DOI: 10.3150/24-
BEJ1838SUPP; .pdf). In the supplement Chen, Ouyang and Vickery (2025) we prove Lemma 2.1 re-
garding the comparability of the heat kernel 𝐺 (𝑡, 𝑥) on T

𝑑 and the Gaussian density 𝑝(𝑡, 𝑥).
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